type
status
date
slug
summary
tags
category
icon
password
Java JUC 简介
在 Java 5.0 提供了 java.util.concurrent (简称 JUC )包,在此包中增加了在并发编程中很常用 的实用工具类,用于定义类似于线程的自定义子 系统,包括线程池、异步 IO 和轻量级任务框架。 提供可调的、灵活的线程池。还提供了设计用于 多线程上下文中的 Collection 实现等。
1-volatile 关键字 内存可见性
内存可见性
- 内存可见性(Memory Visibility)是指当某个线程正在使用对象状态 而另一个线程在同时修改该状态,需要确保当一个线程修改了对象 状态后,其他线程能够看到发生的状态变化。
- 可见性错误是指当读操作与写操作在不同的线程中执行时,我们无 法确保执行读操作的线程能适时地看到其他线程写入的值,有时甚 至是根本不可能的事情。
- 我们可以通过同步来保证对象被安全地发布。除此之外我们也可以 使用一种更加轻量级的 volatile 变量。
volatile 关键字
Java 提供了一种稍弱的同步机制,即 volatile 变 量,用来确保将变量的更新操作通知到其他线程。 可以将 volatile 看做一个轻量级的锁,但是又与 锁有些不同:
- 对于多线程,不是一种互斥关系
- 不能保证变量状态的“原子性操作”
2-原子变量 CAS算法
CAS 算法
- CAS (Compare-And-Swap) 是一种硬件对并发的支持,针对多处理器 操作而设计的处理器中的一种特殊指令,用于管理对共享数据的并 发访问。
- CAS 是一种无锁的非阻塞算法的实现。
- CAS 包含了 3 个操作数:
- 需要读写的内存值 V
- 进行比较的值 A
- 拟写入的新值 B
- 当且仅当 V 的值等于 A 时,CAS 通过原子方式用新值 B 来更新 V 的 值,否则不会执行任何操作。
原子变量
- 类的小工具包,支持在单个变量上解除锁的线程安全编程。事实上,此包中的类可 将 volatile 值、字段和数组元素的概念扩展到那些也提供原子条件更新操作的类。
- 类 AtomicBoolean、AtomicInteger、AtomicLong 和 AtomicReference 的实例各自提供对 相应类型单个变量的访问和更新。每个类也为该类型提供适当的实用工具方法。
- AtomicIntegerArray、AtomicLongArray 和 AtomicReferenceArray 类进一步扩展了原子操 作,对这些类型的数组提供了支持。这些类在为其数组元素提供 volatile 访问语义方 面也引人注目,这对于普通数组来说是不受支持的。
- 核心方法:boolean compareAndSet(expectedValue, updateValue)
- java.util.concurrent.atomic 包下提供了一些原子操作的常用类:
- AtomicBoolean 、AtomicInteger 、AtomicLong 、 AtomicReference
- AtomicIntegerArray 、AtomicLongArray
- AtomicMarkableReference
- AtomicReferenceArray
- AtomicStampedReference
3-ConcurrentHashMap 锁分段机制
ConcurrentHashMap
- Java 5.0 在 java.util.concurrent 包中提供了多种并发容器类来改进同步容器 的性能。
- ConcurrentHashMap 同步容器类是Java 5 增加的一个线程安全的哈希表。对 与多线程的操作,介于 HashMap 与 Hashtable 之间。内部采用“锁分段” 机制替代 Hashtable 的独占锁。进而提高性能。
- 此包还提供了设计用于多线程上下文中的 Collection 实现: ConcurrentHashMap、ConcurrentSkipListMap、ConcurrentSkipListSet、 CopyOnWriteArrayList 和 CopyOnWriteArraySet。当期望许多线程访问一个给 定 collection 时,ConcurrentHashMap 通常优于同步的 HashMap, ConcurrentSkipListMap 通常优于同步的 TreeMap。当期望的读数和遍历远远 大于列表的更新数时,CopyOnWriteArrayList 优于同步的 ArrayList。
4-CountDownLatch 闭锁
CountDownLatch
- Java 5.0 在 java.util.concurrent 包中提供了多种并发容器类来改进同步容器 的性能。
- CountDownLatch 一个同步辅助类,在完成一组正在其他线程中执行的操作 之前,它允许一个或多个线程一直等待。
- 闭锁可以延迟线程的进度直到其到达终止状态,闭锁可以用来确保某些活 动直到其他活动都完成才继续执行:
- 确保某个计算在其需要的所有资源都被初始化之后才继续执行;
- 确保某个服务在其依赖的所有其他服务都已经启动之后才启动;
- 等待直到某个操作所有参与者都准备就绪再继续执行。
5-实现 Callable 接口
Callable 接口
- Java 5.0 在 java.util.concurrent 提供了一个新的创建执行 线程的方式:Callable 接口
- Callable 接口类似于 Runnable,两者都是为那些其实例可 能被另一个线程执行的类设计的。但是 Runnable 不会返 回结果,并且无法抛出经过检查的异常。
- Callable 需要依赖FutureTask ,FutureTask 也可以用作闭锁。
6-Lock 同步锁
显示锁 Lock
- 在 Java 5.0 之前,协调共享对象的访问时可以使用的机制只有 synchronized 和 volatile 。Java 5.0 后增加了一些新的机制,但并不是一种替代内置锁的方法,而是当内置锁不适用时,作为一种可选择的高级功能。
- ReentrantLock 实现了 Lock 接口,并提供了与 synchronized 相同的互斥性和内存可见性。但相较于 synchronized 提供了更高的处理锁的灵活性。
7-Condition 控制线程通信
Condition
- Condition 接口描述了可能会与锁有关联的条件变量。这些变量在用 法上与使用 Object.wait 访问的隐式监视器类似,但提供了更强大的 功能。需要特别指出的是,单个 Lock 可能与多个 Condition 对象关 联。为了避免兼容性问题,Condition 方法的名称与对应的 Object 版 本中的不同。
- 在 Condition 对象中,与 wait、notify 和 notifyAll 方法对应的分别是 await、signal 和 signalAll。
- Condition 实例实质上被绑定到一个锁上。要为特定 Lock 实例获得 Condition 实例,请使用其 newCondition() 方法。
8-线程按序交替
线程按序交替
编写一个程序,开启 3 个线程,这三个线程的 ID 分别为 A、B、C,每个线程将自己的 ID 在屏幕上打印 10 遍,要 求输出的结果必须按顺序显示。
如:ABCABCABC…… 依次递归
9-ReadWriteLock 读写锁
读-写锁 ReadWriteLock
- ReadWriteLock 维护了一对相关的锁,一个用于只读操作, 另一个用于写入操作。只要没有 writer,读取锁可以由 多个 reader 线程同时保持。写入锁是独占的。
- ReadWriteLock 读取操作通常不会改变共享资源,但执行 写入操作时,必须独占方式来获取锁。对于读取操作占 多数的数据结构。 ReadWriteLock 能提供比独占锁更高 的并发性。而对于只读的数据结构,其中包含的不变性 可以完全不需要考虑加锁操作。
10-线程八锁
线程八锁
- 一个对象里面如果有多个synchronized方法,某一个时刻内,只要一个线程去调用 其中的一个synchronized方法了,其它的线程都只能等待,换句话说,某一个时刻 内,只能有唯一一个线程去访问这些synchronized方法
- 锁的是当前对象this,被锁定后,其它的线程都不能进入到当前对象的其它的 synchronized方法
- 加个普通方法后发现和同步锁无关
- 换成两个对象后,不是同一把锁了,情况立刻变化。
- 都换成静态同步方法后,情况又变化
- 所有的非静态同步方法用的都是同一把锁——实例对象本身,也就是说如果一个实 例对象的非静态同步方法获取锁后,该实例对象的其他非静态同步方法必须等待获 取锁的方法释放锁后才能获取锁,可是别的实例对象的非静态同步方法因为跟该实 例对象的非静态同步方法用的是不同的锁,所以毋须等待该实例对象已获取锁的非 静态同步方法释放锁就可以获取他们自己的锁。
- 所有的静态同步方法用的也是同一把锁——类对象本身,这两把锁是两个不同的对 象,所以静态同步方法与非静态同步方法之间是不会有竞态条件的。但是一旦一个 静态同步方法获取锁后,其他的静态同步方法都必须等待该方法释放锁后才能获取 锁,而不管是同一个实例对象的静态同步方法之间,还是不同的实例对象的静态同 步方法之间,只要它们同一个类的实例对象!
11-线程池
线程池
- 第四种获取线程的方法:线程池,一个 ExecutorService,它使用可能的几个池线程之 一执行每个提交的任务,通常使用 Executors 工厂方法配置。
- 线程池可以解决两个不同问题:由于减少了每个任务调用的开销,它们通常可以在 执行大量异步任务时提供增强的性能,并且还可以提供绑定和管理资源(包括执行 任务集时使用的线程)的方法。每个 ThreadPoolExecutor 还维护着一些基本的统计数 据,如完成的任务数。
- 为了便于跨大量上下文使用,此类提供了很多可调整的参数和扩展钩子 (hook)。但 是,强烈建议程序员使用较为方便的 Executors 工厂方法 :
- Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)
- Executors.newFixedThreadPool(int)(固定大小线程池)
- Executors.newSingleThreadExecutor()(单个后台线程)
- 它们均为大多数使用场景预定义了设置。
12-线程调度
ScheduledExecutorService
- 一个 ExecutorService,可安排在给定的延迟后运行或定 期执行的命令。
13-ForkJoinPool 分支/合并框架 工作窃取
Fork/Join 框架
- Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成 若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进 行 join 汇总。
Fork/Join 框架与线程池的区别
- 采用 “工作窃取”模式(work-stealing): 当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加 到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队 列中。
- 相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务 的处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些 原因无法继续运行,那么该线程会处于等待状态。而在fork/join框架实现中, 如果某个子问题由于等待另外一个子问题的完成而无法继续运行。那么处理 该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了 线程的等待时间,提高了性能。
- 作者:JanePoint
- 链接:http://github.com/fanzhineng/article/juc
- 声明:本文采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。